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CHAPTER 1

Getting Started

1.1 Introduction

Welcome to the Nyx User’s Guide! In this document is an overview of Nyx, an adaptive mesh
compressible cosmological hydrodynamics simulation code. Another place to look for information
about what is being done with Nyx is https://amrex-astro.github.io/Nyx – definitely check
that out for the latest science being done with Nyx and papers published.

1.2 Downloading the Code

Nyx is built on top of the amrex framework. In order to run Nyx, you must download two separate
git modules.

First, make sure that git is installed on your machine—we recommend version 1.7.x or higher.

1. Clone/fork the amrex repository:

git clone https://github.com/AMReX-Codes/amrex

You will want to periodically update amrex by typing

git pull

in the amrex/ directory.

Note: when you check out amrex (and Nyx), you will get the master branch. The Nyx master
branch is guaranteed to be compatible with the amrex master branch. Active development is
done on the development branch in each repo, and merged into the master branch monthly. If
you wish to use the Nyx development branch, then you should also switch to the development
branch for amrex.
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2. Set the environment variable, AMREX HOME, on your machine to point to the path name where
you have put amrex. You can add this to your .bashrc as:

export AMREX_HOME= /path/to/amrex/

or to your .cshrc as:

setenv AMREX_HOME /path/to/amrex/

where you replace /path/to/amrex/ will the full path to the amrex/ directory.

3. Clone/fork the Nyx repository:

git clone https://github.com/AMReX-Astro/Nyx

As with amrex development on Nyx is done in the development branch, so you should work
there if you want the latest source.

1.3 Building the Code

1. From the directory in which you checked out Nyx, type

cd Nyx/Exec/LyA

This will put you into a directory in which you can run a small version of the Santa Barbara
test problem.

2. In Nyx/Exec/LyA, edit the GNUmakefile, and set

COMP = your favorite compiler (e.g, gnu, Intel)

DEBUG = FALSE

We like COMP = gnu.

3. Now type “make”. The resulting executable will look something like “Nyx3d.Linux.gnu.ex”,
which means this is a 3-d version of the code, made on a Linux machine, with COMP = gnu.

1.4 Running the Code

1. Type:

Nyx3d.Linux.gnu.ex inputs

2. You will notice that running the code generates directories that look like plt00000, plt00020,
etc., and chk00000, chk00020, etc. These are “plotfiles” and “checkpoint” files. The plotfiles
are used for visualization, and the checkpoint files for restarting the code.
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1.5 Visualization

There are several visualization tools that can be used for Nyx plotfiles. The standard tool used
within the amrex community is Amrvis, a package developed and supported by CCSE that is designed
specifically for highly efficient visualization of block-structured hierarchical AMR data. Plotfiles
can also be viewed using the VisIt, ParaView, and yt packages. Particle data can be viewed using
ParaView.

Please see Chapter 9 of the AMReX User’s Guide (available in amrex/Docs) for more detail
about using all of these visualization packages.
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CHAPTER 2

Inputs Files

The Nyx executable reads run-time information from an “inputs” file (which you put on the com-
mand line) and from a “probin” file, the name of which is usually defined in the inputs file, but
which defaults to “probin”. To set the “probin” file name in the inputs file:

amr.probin file = my special probin

for example, has the Fortran code read a file called my special probin.

2.1 Problem Geometry

2.1.1 List of Parameters

Parameter Definition Acceptable Values Default
geometry.prob lo physical location of low corner of the domain Real must be set
geometry.prob hi physical location of high corner of the domain Real must be set
geometry.coord sys coordinate system 0 = Cartesian, 1 = r-z, 2 = spherical must be set
geometry.is periodic is the domain periodic in this direction 0 if false, 1 if true 0 0 0

2.1.2 Examples of Usage

• geometry.prob lo = 0 0 0
defines the low corner of the domain at (0,0,0) in physical space.

• geometry.prob hi = 1.e8 2.e8 2.e8
defines the high corner of the domain at (1.e8,2.e8,2.e8) in physical space.

• geometry.coord sys = 0
defines the coordinate system as Cartesian
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• geometry.is periodic = 0 1 0
says the domain is periodic in the y-direction only.

2.2 Domain Boundary Conditions

2.2.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.lo bc boundary type of each low face 0,1,2,3,4,5 must be set
nyx.hi bc boundary type of each high face 0,1,2,3,4,5 must be set

2.2.2 Notes

Boundary types are:

0 – Interior / Periodic 3 – Symmetry
1 – Inflow 4 – Slip Wall
2 – Outflow 5 – No Slip Wall

Note – nyx.lo bc and nyx.hi bc must be consistent with geometry.is periodic – if the domain
is periodic in a particular direction then the low and high bc’s must be set to 0 for that direction.

2.2.3 Examples of Usage

• nyx.lo bc = 1 4 0

• nyx.hi bc = 2 4 0

• geometry.is periodic = 0 0 1

would define a problem with inflow (1) in the low-x direction, outflow(2) in the high-x direction,
slip wall (4) on the low and high y-faces, and periodic in the z-direction.

2.3 Resolution

2.3.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.n cell number of cells in each direction at the coarsest level Integer > 0 must be set
amr.max level number of levels of refinement above the coarsest level Integer ≥ 0 must be set
amr.ref ratio ratio of coarse to fine grid spacing between subsequent levels 2 or 4 must be set
amr.regrid int how often to regrid Integer > 0 must be set
amr.regrid on restart should we regrid immediately after restarting 0 or 1 0

Note: if amr.max level = 0 then you do not need to set amr.ref ratio or amr.regrid int.
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2.3.2 Examples of Usage

• amr.n cell = 32 64 64

would define the domain to have 32 cells in the x-direction, 64 cells in the y-direction, and
64 cells in the z-direction at the coarsest level. (If this line appears in a 2D inputs file then
the final number will be ignored.)

• amr.max level = 2
would allow a maximum of 2 refined levels in addition to the coarse level. Note that these ad-
ditional levels will only be created only if the tagging criteria are such that cells are flagged as
needing refinement. The number of refined levels in a calculation must be ≤ amr.max level,
but can change in time and need not always be equal to amr.max level.

• amr.ref ratio = 2 4
would set factor 2 refinement between levels 0 and 1, and factor 4 refinement between levels 1
and 2. Note that you must have at least amr.max level values of amr.ref ratio (Additional
values may appear in that line and they will be ignored).

• amr.regrid int = 2 2
tells the code to regrid every 2 steps. Thus in this example, new level-1 grids will be created
every 2 level-0 time steps, and new level-2 grids will be created every 2 level-1 time steps.

2.4 Tagging

2.4.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.allow untagging are cells allowed to be “untagged” 0 or 1 0

2.4.2 Notes

• Typically cells at a given level can be tagged as needing refinement by any of a number of
criteria, but cannot be “untagged”. That is, once tagged, no other criteria can untag them.
If we set nyx.allow untagging = 1 then the user is allowed to “untag” cells in the Fortran
tagging routines.

2.5 Regridding

2.5.1 Overview

The details of the regridding strategy are described in Section 2.5.5, but first we cover how the
input parameters can control the gridding.

As described later, the user defines Fortran subroutines which tag individual cells at a given
level if they need refinement. This list of tagged cells is sent to a grid generation routine, which
uses the Berger–Rigoutsos algorithm to create rectangular grids that contain the tagged cells.
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2.5.2 List of Parameters

Parameter Definition Acceptable Values Default
amr.regrid file name of file from which to read the grids text no file
amr.grid eff grid efficiency at coarse level at which grids are created Real > 0 and < 1 0.7
amr.n error buf radius of additional tagging around already tagged cells Integer ≥ 0 1
amr.max grid size maximum size of a grid in any direction Integer > 0 128 in 2D, 32 in 3D
amr.blocking factor grid size must be a multiple of this Integer > 0 2
amr.refine grid layout refine grids more if # of processors > # of grids 0 if false, 1 if true 1

2.5.3 Notes

• amr.n error buf, amr.max grid size and amr.blocking factor can be read in as a single
value which is assigned to every level, or as multiple values, one for each level

• amr.max grid size at every level must be even

• amr.blocking factor at every level must be a power of 2

• the domain size amr.n cell must be a multiple of amr.blocking factor at level 0

• amr.max grid size must be a multiple of amr.blocking factor at every level

2.5.4 Examples of Usage

• amr.regrid file = fixed grids
In this case the list of grids at each fine level are contained in the file fixed grids, which will be
read during the gridding procedure. These grids must not violate the amr.max grid size
criterion. The rest of the gridding procedure described below will not occur if amr.regrid file
is set.

• amr.grid eff = 0.9
During the grid creation process, at least 90% of the cells in each grid at the level at which
the grid creation occurs must be tagged cells. Note that this is applied at the coarsened level
at which the grids are actually made, and before amr.max grid size is imposed.

• amr.max grid size = 64
The final grids will be no longer than 64 cells on a side at every level.

• amr.max grid size = 64 32 16
The final grids will be no longer than 64 cells on a side at level 0, 32 cells on a side at level
1, and 16 cells on a side at level 2.

• amr.blocking factor = 32
The dimensions of all the final grids will be multiples of 32 at all levels.

• amr.blocking factor = 32 16 8
The dimensions of all the final grids will be multiples of 32 at level 0, multiples of 16 at level
1, and multiples of 8 at level 2.
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Having grids that are large enough to coarsen multiple levels in a V-cycle is essential for good
multigrid performance in simulations that use self-gravity.

2.5.5 How Grids are Created

The gridding algorithm proceeds in this order:

1. If at level 0, the domain is initially defined by n cell as specified in the inputs file. If at level
greater than 0, grids are created using the Berger–Rigoutsis clustering algorithm applied to
the tagged cells, modified to ensure that the lengths of all new fine grids are divisible by
blocking factor.

2. Next, the grid list is chopped up if any grids have length longer than max grid size. Note
that because max grid size is a multiple of blocking factor (as long as max grid size is
greater than blocking factor), the blocking factor criterion is still satisfied.

3. Next, if refine grid layout = 1 and there are more processors than grids at this level, then
the grids at this level are further divided in order to ensure that no processor has fewer than
one grid (at each level).

• if max grid size / 2 in the BL SPACEDIM direction is a multiple of block-
ing factor, then chop the grids in the BL SPACEDIM direction so that none of
the grids are longer in that direction than max grid size / 2

• If there are still fewer grids than processes, repeat the procedure in the BL SPACEDIM-
1 direction, and again in the BL SPACEDIM-2 direction if necessary

• If after completing a sweep in all coordinate directions with max grid size / 2, there
are still fewer grids than processes, repeat the steps above with max grid size / 4.

2.6 Simulation Time

2.6.1 List of Parameters

Parameter Definition Acceptable Values Default
max step maximum number of level-0 time steps Integer ≥ 0 -1
stop time final simulation time Real ≥ 0 -1.0
nyx.final a if nyx.use comoving = t and positive value then this is final value of a Real > 0 -1.0
nyx.final z if nyx.use comoving = t and positive value then this is final value of z Real > 0 -1.0

2.6.2 Notes

To control the number of time steps, you can limit by the maximum number of level-0 time steps
(max step), or the final simulation time (stop time), or both. The code will stop at whichever
criterion comes first. Note that if the code reaches stop time then the final time step will be
shortened so as to end exactly at stop time, not pass it.

If running in comoving coordinates you can also set a final value of a by setting nyx.final a,
or a final value of z by setting nyx.final z. You may only specify one or the other of these. Once
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this value of a or z is reached in a time step, the code will stop at the end of this full coarse time
step. (Note it does not stop at a (or z) exactly equal to the final value, rather it stops once a is
greater than (or z is less than) this value.)

2.6.3 Examples of Usage

• max step = 1000

• stop time = 1.0

will end the calculation when either the simulation time reaches 1.0 or the number of level-0 steps
taken equals 1000, whichever comes first.

2.7 Time Step

• If nyx.do hydro= 1, then typically the code chooses a time step based on the CFL number
(dt = cfl * dx / max(u+c) ).

• If nyx.do hydro= 0 and we are running with dark matter particles, then we use a time step
based on the velocity of the particles, i.e., we set ∆t so that the particle goes no further than
f∆t in a coordinate direction where 0 ≤ f ≤ 1. The value for f is currently hard-wired in
Particles.H, but it will become an inputs parameter.

2.7.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.cfl CFL number for hydro Real > 0 and ≤ 1 0.8
particles.cfl CFL number for particles Real > 0 and ≤ 1 0.5
nyx.init shrink factor by which to shrink the initial time step Real > 0 and ≤ 1 1.0
nyx.change max factor by which the time step can grow in subsequent steps Real ≥ 1 1.1
nyx.fixed dt level-0 time step regardless of cfl or other settings Real > 0 unused if not set
nyx.initial dt initial level-0 time step regardless of other settings Real > 0 unused if not set
nyx.dt cutoff time step below which calculation will abort Real > 0 0.0

2.7.2 Examples of Usage

• nyx.cfl = 0.9
defines the timestep as dt = cfl * dx / umax hydro.

• particles.cfl = 0.9
defines the timestep as dt = cfl * dx / umax particles where umax particles is the maximum
velocity of any particle in the domain.

• nyx.init shrink = 0.01
sets the initial time step to 1% of what it would be otherwise.

• nyx.change max = 1.1
allows the time step to increase by no more than 10% in this case. Note that the time step
can shrink by any factor; this only controls the extent to which it can grow.
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• nyx.fixed dt = 1.e-4
sets the level-0 time step to be 1.e-4 for the entire simulation, ignoring the other timestep
controls. Note that if nyx.init shrink 6= 1 then the first time step will in fact be
nyx.init shrink * nyx.fixed dt.

• nyx.initial dt = 1.e-4
sets the initial level-0 time step to be 1.e-4 regardless of nyx.cfl or nyx.fixed dt. The time
step can grow in subsequent steps by a factor of nyx.change max each step.

• nyx.dt cutoff = 1.e-20
tells the code to abort if the time step ever gets below 1.e-20. This is a safety mechanism so
that if things go nuts you don’t burn through your entire computer allocation because you
don’t realize the code is misbehaving.

2.8 Subcycling

Nyx supports a number of different modes for subcycling in time.

• If amr.subcycling mode=Auto (default), then the code will run with equal refinement in
space and time. In other words, if level n + 1 is a factor of 2 refinement above level n, then
n+ 1 will take 2 steps of half the duration for every level n step.

• If amr.subcycling mode=None, then the code will not refine in time. All levels will advance
together with a timestep dictated by the level with the strictest dt. Note that this is identical
to the deprecated command amr.nosub = 1.

• If amr.subcycling mode=Manual, then the code will subcycle according to the values sup-
plied by subcycling iterations.

2.8.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.subcycling mode How shall we subcycle Auto, None or Manual Auto
amr.subcycling iterations Number of cycles at each level 1 or ref ratio must be set in Manual mode

2.8.2 Examples of Usage

• amr.subcycling mode=Manual
Subcycle in manual mode with largest allowable timestep.

• amr.subcycling iterations = 1 2 1 2
Take 1 level-0 timestep at a time (required). Take 2 level-1 timesteps for each level-0 step, 1
timestep at level 2 for each level-1 step, and take 2 timesteps at level 3 for each level 2 step.

• amr.subcycling iterations = 2
Alternative form. Subcycle twice at every level (except level 0).
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2.9 Restart Capability

Nyx has a standard sort of checkpointing and restarting capability. In the inputs file, the following
options control the generation of checkpoint files (which are really directories):

2.9.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.check file prefix for restart files Text “chk”
amr.check int how often (by level-0 time steps) to write restart files Integer > 0 -1
amr.check per how often (by simulation time) to write restart files Real > 0 -1.0
amr.restart name of the file (directory) from which to restart Text not used if not set
amr.checkpoint files output should we write checkpoint files 0 or 1 1
amr.check nfiles how parallel is the writing of the checkpoint files Integer ≥ 1 64
amr.checkpoint on restart should we write a checkpoint immediately after restarting 0 or 1 0

2.9.2 Notes

• You should specify either amr.check int or amr.check per. Do not try to specify both.

• Note that if amr.check per is used then in order to hit that exact time the code may modify
the time step slightly, which will change your results ever so slightly than if you didn’t set
this flag.

• Note that amr.plotfile on restart and amr.checkpoint on restart only take effect if
amr.regrid on restart is in effect.

• See the Software Section for more details on parallel I/O and the amr.check nfiles param-
eter.

• If you are doing a scaling study then set amr.checkpoint files output = 0 so you can test
scaling of the algorithm without I/O.

2.9.3 Examples of Usage

• amr.check file = chk run

• amr.check int = 10

means that restart files (really directories) starting with the prefix “chk run” will be gener-
ated every 10 level-0 time steps. The directory names will be chk run00000, chk run00010,
chk run00020, etc.

If instead you specify

• amr.check file = chk run
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• amr.check per = 0.5

then restart files (really directories) starting with the prefix “chk run” will be generated
every 0.1 units of simulation time. The directory names will be chk run00000, chk run00043,
chk run00061, etc, where t = 0.1 after 43 level-0 steps, t = 0.2 after 61 level-0 steps, etc.

To restart from chk run00061,for example, then set

• amr.restart = chk run00061

2.10 Controlling PlotFile Generation

The main output from Nyx is in the form of plotfiles (which are really directories). The following
options in the inputs file control the generation of plotfiles

2.10.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.plot file prefix for plotfiles Text “plt”
amr.plot int how often (by level-0 time steps) to write plot files Integer > 0 -1
amr.plot per how often (by simulation time) to write plot files Real > 0 -1.0
amr.plot vars name of state variables to include in plotfiles ALL, NONE or list ALL
amr.derive plot vars name of derived variables to include in plotfiles ALL, NONE or list NONE
amr.plot files output should we write plot files 0 or 1 1
amr.plotfile on restart should we write a plotfile immediately after restarting 0 or 1 0
amr.plot nfiles how parallel is the writing of the plotfiles Integer ≥ 1 64
nyx.plot phiGrav Should we plot the gravitational potential 0 or 1 0

plot the gravitational potential 0 or 1 0
particles.write in plotfile Should we write the particles in a file within the plotfile 0 or 1 0
fab.format Should we write the plotfile in double or single precision NATIVE or IEEE32 NATIVE

All the options for amr.derive plot vars are kept in derive lst in Nyx setup.cpp. Feel free
to look at it and see what’s there.

2.10.2 Notes

• You should specify either amr.plot int or amr.plot per. Do not try to specify both.

• Note that if amr.plot per is used then in order to hit that exact time the code may modify
the time step slightly, which will change your results ever so slightly than if you didn’t set
this flag.

• See the Software Section for more details on parallel I/O and the amr.plot nfiles parameter.

• If you are doing a scaling study then set amr.plot files output = 0 so you can test scaling
of the algorithm without I/O.

• nyx.plot phiGrav is only relevant if nyx.do grav = 1 and gravity.gravity type = Pois-
sonGrav

• By default, plotfiles are written in double precision (NATIVE format). If you want to save
space by writing them in single precision, set the fab.format flag to IEEE32.
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2.10.3 Examples of Usage

• amr.plot file = plt run

• amr.plot int = 10

means that plot files (really directories) starting with the prefix “plt run” will be gener-
ated every 10 level-0 time steps. The directory names will be plt run00000, plt run00010,
plt run00020, etc.

If instead you specify

• amr.plot file = plt run

• amr.plot per = 0.5

then restart files (really directories) starting with the prefix “plt run” will be generated ev-
ery 0.1 units of simulation time. The directory names will be plt run00000, plt run00043,
plt run00061, etc, where t = 0.1 after 43 level-0 steps, t = 0.2 after 61 level-0 steps, etc.

2.11 Screen Output

2.11.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.v verbosity of Amr.cpp 0 or 1 0
nyx.v verbosity of Nyx.cpp 0 or 1 0
gravity.v verbosity of Gravity.cpp 0 or 1 0
mg.v verbosity of multigrid solver (for gravity) 0,1,2,3,4 0
particles.v verbosity of particle-related processes 0,1,2,3,4 0
amr.grid log name of the file to which the grids are written Text not used if not set
amr.run log name of the file to which certain output is written Text not used if not set
amr.run log terse name of the file to which certain (terser) output is written Text not used if not set
amr.sum interval if > 0, how often (in level-0 time steps)

to compute and print integral quantities Integer -1
nyx.do special tagging 0 or 1 1

2.11.2 Notes

• nyx.do special tagging = 1 allows the user to set a special flag based on user-specified
criteria. This can be used, for example, to calculate the bounce time in a core collapse
simulation; the bounce time is defined as the first time at which the maximum density in the
domain exceeds a user-specified value. This time can then be printed into a special file as a
useful diagnostic.

2.11.3 Examples of Usage

• amr.grid log = grdlog
Every time the code regrids it prints a list of grids at all relevant levels. Here the code will
write these grids lists into the file grdlog.
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• amr.run log = runlog
Every time step the code prints certain statements to the screen (if amr.v = 1), such as
STEP = 1 TIME = 1.91717746 DT = 1.91717746
PLOTFILE: file = plt00001
Here these statements will be written into runlog as well.

• amr.run log terse = runlogterse
This file, runlogterse, differs from runlog in that it only contains lines of the form
10 0.2 0.005
in which “10” is the number of steps taken, “0.2” is the simulation time, and “0.005” is the
level-0 time step. This file can be plotted very easily to monitor the time step.

• nyx.sum interval = 2
if nyx.sum interval > 0 then the code computes and prints certain integral quantities, such
as total mass, momentum and energy in the domain every nyx.sum interval level-0 steps.
In this example the code will print these quantities every two coarse time steps. The print
statements have the form
TIME= 1.91717746 MASS= 1.792410279e+34
for example. If this line is commented out then it will not compute and print these quanitities.

2.12 Gravity

2.12.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.do grav Include gravity as a forcing term 0 if false, 1 if true must be set if USE GRAV = TRUE

gravity.gravity type
if nyx.do grav = 1, CompositeGrav,

must be set
how shall gravity be calculated PoissonGrav

gravity.no sync
if gravity.gravity type = PoissonGrav,

0 or 1 0
whether to perform the “sync solve”

gravity.no composite
if gravity.gravity type = PoissonGrav,

0 or 1 0
whether to perform a composite solve

2.12.2 Notes

Gravity types are CompositeGrav or PoissonGrav. See Chapter 6 on Gravity for more detail.

• To include gravity you must set

– USE GRAV = TRUE in the GNUmakefile

– nyx.do grav = 1 in the inputs file

• gravity.gravity type is only relevant if nyx.do grav = 1

• gravity.no sync and gravity.no composite are only relevant if gravity.gravity type =
PoissonGrav, i.e., the code does a full Poisson solve for self-gravity.
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2.13 Physics

2.13.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.do hydro Time-advance the fluid dynamical equations 0 if false, 1 if true must be set
nyx.do react Include reactions 0 if false, 1 if true must be set
nyx.add ext src Include additional user-specified source term 0 if false, 1 if true 0
nyx.use const species If 1 then read h species and he species 0 or 1 0
nyx.h species Concentration of H 0 < X < 1 0
nyx.he species Concentration of He 0 < X < 1 0
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CHAPTER 3

Units and Constants

3.1 Units and Constants

We support two different systems of units in Nyx: CGS and Cosmological. All inputs and problem
initialization should be specified consistently with one of these sets of units. No internal conversions
of units occur within the code, so the output must be interpreted appropriately.

The default is cosmological units.

If you want to use CGS units instead, then set

USE CGS = TRUE

in your GNUmakefile. This will select the file constants cgs.f90 instead of constants cosmo.f90

from the Nyx/constants directory.
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Location Variable CGS Cosmological Conversion Data

inputs file geometry.prob lo cm Mpc 1Mpc = 3.08568025e24 cm
geometry.prob hi cm Mpc 1Mpc = 3.08568025e24 cm

Hydro Initialization density g / cm3 M� / Mpc3 1 (M� / Mpc3) = .06769624e-39 (g/cm3)

Hydro Initialization velocities cm/s km/s 1km = 1.e5 cm

Hydro Initialization momenta (g/cm3) (cm/s) (M�/Mpc3) (km/s) 1km = 1.e5 cm
1 (M� / Mpc3) = .06769624e-39 g/cm3

Hydro Initialization temperature K K 1

Hydro Initialization specific energy (e or E) erg/g= (cm/s)2 (km/s)2 1 (km/s)2 = 1.e10 (cm/s)2

Hydro Initialization energy (ρe or ρE) erg / cm3 = (M�/Mpc3) (km/s)2 1 (km/s)2 = 1.e10 (cm/s)2

(g/cm3) (cm/s)2 1 (M� / Mpc3) = .06769624e-39 g/cm3

Particle Initialization particle mass g M� 1 M� = 1.98892e33 g

Particle Initialization particle locations cm Mpc 1 Mpc = 3.08568025e24 cm

Particle Initialization particle velocities cm/s km/s 1 km = 1e5 cm

Output Pressure g (cm/s)2 / cm3 M� (km/s)2 / Mpc3 1 M� (km/s)2 / Mpc3 =
.06769624e-29 g (cm/s)2 / cm3

Output Gravity (cm/s) / s (km/s)2 / Mpc 1 M� (km/s)2 / Mpc3 =

Output Time s (Mpc/km) s 1 Mpc = 3.08568025e19 km

Table 3.1: Units
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Constant CGS Cosmological Conversion Data

Gravitational constant (G) 6.67428e-8 cm (cm/s)2 g−1 4.3019425e-9 Mpc (km/s)2 M−1
�

Avogadro’s number (nA) 6.02214129e23 g−1 1.1977558e57 M−1
� 1 M� = 1.98892e33 g

Boltzmann’s constant (kB) 1.3806488e-16 erg / K 0.6941701e-59 M� (km/s)2 / K 1 M� (km/s)2 = 1.98892e43 g (cm/s)2

Hubble constant (H) 100 (km/s) / Mpc 32.407764868e-19 s−1 1 Mpc = 3.08568025e19 km

Table 3.2: Constants
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The only other place that dimensional numbers are used in the code is in the tracing and
Riemann solve. We set three small numbers which need to be consistent with the data specified.
Each of these can be specified in the inputs file.

• small dens – small value for density

• small p – small value for pressure

• small T – small value for temperature

These are the places that each is used in the code:

• small dens

– subroutine enforce minimum density (called after subroutine consup) – if ρ <
small dens then ρ is set to the minimum value of the 26 neighbors. This also modi-
fies momenta, ρE and ρe so that velocties, E and e remain unchanged.

– subroutine tracexy / tracez / tracexy ppm / tracez ppm:
qxp = max(qxp,small dens)
qxm = max(qxm,small dens)
and analogously for qyp/qym and qzp/qzm. This only modifies density inside the trac-
ing, not the other variables

– subroutine riemannus – we set

wsmall = small dens * csmall

and then

wl = max(wsmall, sqrt(gaml * pl * rl))
wr = max(wsmall, sqrt(gamr * pr * rr))

Also, we set

ro = max(small dens,ro)

where ro = 0.5 * (rl + rr) – this state is only chosen when ustar = 0, and

rstar = max(small dens,rstar)

where rstar = ro + (pstar-po)/co2

– subroutine react state – only compute reaction if ρ > small dens

• small temp:

– subroutine ctoprim: if ρe < 0, then

call subroutine nyx eos given RTX (e,...,small temp,...) in order to compute a new en-
ergy, e.

This energy is then used to
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call subroutine nyx eos given ReX in order to compute the sound speed, c.

Coming out of this the temperature is equal to small temp and the energy e has been
reset.

– subroutine react state: if ρe < 0, then

call subroutine nyx eos given RTX (e,...,small temp,...) in order to compute a new en-
ergy, e.

This energy is then used to proceed with the burner routine.

– subroutine reset internal energy: if e < 0 and E − ke < 0 then

call subroutine nyx eos given RTX (e,...,small temp,...) in order to compute a new en-
ergy, e. This energy is also used to

define a new E = e+ ke

• small pres:

– subroutine riemannus – we set

pstar = max(small pres,pstar)

pgdnv = max(small pres,pgdnv). Note that pgdnv is the pressure explicitly used in the
fluxes.

– subroutine uflaten – small pres is used to keep the denominator away from zero

– Everywhere we define values of pressure on a face, we set that value to be at least
small pres.
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CHAPTER 4

Equations in Comoving Coordinates

4.1 Hydrodynamic Equations in Comoving Coordinates

4.1.1 Conservative Form

We solve the equations of gas dynamics in a coordinate system that is comoving with the expanding
universe, with expansion factor, a, related to the redshift, z, by a = 1/(1 + z). The continuity
equation is written,

∂ρb
∂t

= −1

a
∇ · (ρbU) , (4.1)

where ρb is the comoving baryonic density, related to the proper density by ρb = a3ρproper, and U
is the proper peculiar baryonic velocity.

The momentum evolution equation can be expressed as

∂(ρbU)

∂t
=

1

a
(−∇ · (ρbUU)−∇p+ ρbg + SρU − ȧρbU) , (4.2)

or equivalently,

∂(aρbU)

∂t
= −∇ · (ρbUU)−∇p+ ρbg + SρU , (4.3)

where the pressure, p, that appears in the evolution equations is related to the proper pressure,
pproper, by p = a3pproper. Here g = −∇φ is the gravitational acceleration vector, and SρU represents
any external forcing terms.

The energy equation can be written,

∂(ρbE)

∂t
=

1

a
[−∇ · (ρbUE + pU) + (ρbU · g + SρE)− ȧ(3(γ − 1)ρbe+ ρb(U ·U))] . (4.4)

or equivalently,

∂(a2ρbE)

∂t
= a [−∇ · (ρbUE + pU) + ρbU · g + SρE + ȧ( (2− 3(γ − 1)) ρbe)] . (4.5)
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Here E = e + U ·U/2 is the total energy per unit mass, where e is the specific internal energy.
SρE = Sρe + U · SρU where Sρe = ΛH −ΛC represents the heating and cooling terms, respectively.
We can write the evolution equation for internal energy as

∂(ρbe)

∂t
=

1

a
[−∇ · (ρbUe)− p∇ ·U− ȧ(3(γ − 1)ρbe) + Sρe] . (4.6)

or equivalently,

∂(a2ρbe)

∂t
= a [−∇ · (ρbUe)− p∇ ·U + Sρe + ȧ( (2− 3(γ − 1)) ρbe)] . (4.7)

Note that for a gamma-law gas with γ = 5/3, we can write

∂(a2ρbE)

∂t
= a [−∇ · (ρbUE + pU) + ρbU · g + Sρe] . (4.8)

and

∂(a2ρbe)

∂t
= a [−∇ · (ρbUe)− p∇ ·U + Sρe] . (4.9)

4.1.2 Tracing

In order to compute the fluxes on faces, we trace ρ,U, ρe and p to the faces.
Thus we must convert the momentum evolution equation into a velocity evolution equation:

∂U

∂t
=

1

ρb

(
∂(ρbU)

∂t
−U

∂ρb
∂t

)
(4.10)

=
1

aρb
(−∇ · (ρbUU)−∇p+ ρbg + SρU − ȧρbU) +

1

a
U ∇ · (ρbU) (4.11)

=
1

a

(
−U · ∇U− 1

ρb
∇p+ g +

1

ρb
SρU − ȧU

)
. (4.12)

4.2 Subgrid Scale Model in Comoving Coordinates

The fundamental modification to the standard compressible equations is the addition of a SGS tur-
bulence energy variable, K and associated source terms in the equations for the evolution of velocity,
total energy, and K [8, 3, 7]. The set of conservation equations in comoving coordinates (4.1)–(4.5)
then becomes [2]:

∂ρb
∂t

=− 1

a
∇ · (ρbU) , (4.13)

∂(aρbU)

∂t
=−∇ · (ρbUU)−∇p+∇ · τ + ρbg , (4.14)

∂(a2ρbE)

∂t
=− a∇ · (ρbUE + pU) + aρbU · g + a∇ · (U · τ )− a2(Σ− ρbε) (4.15)

+ aȧ ((2− 3(γ − 1))ρbe) + a2(ΛH − ΛC) ,

∂(a2ρbK)

∂t
=− a∇ · (ρbUK) + a∇ · (ρbκsgs∇K) + a2(Σ− ρbε) . (4.16)
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The interaction between resolved and unresolved turbulent eddies is described by the SGS turbu-
lence stress tensor τ . Since inertial-range dynamics of turbulence is scale-invariant, we conjecture
that τ in comoving coordinates has the same form as for non-expanding fluids. For compressible
turbulence, the following closure is proposed in [5]:

τij = 2C1∆ρb(2Ksgs)
1/2S∗

ij − 4C2ρbK
Ui,kUj,k
|∇U|2

− 2

3
(1− C2)ρbKδij . (4.17)

where |∇U| := (2Ui,kUi,k)
1/2 is the norm of the resolved velocity derivative,

S∗
ij = Sij −

1

3
δijd =

1

2
(Ui,j + Uj,i)−

1

3
δijUk,k (4.18)

is the trace-free rate-of strain, and ∆ = (Mx My Mz)1/3 is the grid scale in comoving coordinates.
The production and dissipation terms in equation (4.16) are defined as follows:

Σ =
1

a
τijSij , (4.19)

ε =
CεK

3/2

a∆
, (4.20)

and κsgs = Cκ∆K1/2 is the SGS diffusivity. Here we assume that the Reynolds number of turbulence
is high such that the damping of turbulent eddies by the microscopic viscosity of the fluid occurs
entirely on the subgrid scales. Because of the numerical viscosity of PPM, however, part of the
numerically resolved kinetic energy will be dissipated directly into internal energy.
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CHAPTER 5

Forcing

In Nyx a stochastic force field can be applied. To make sure this option is chosen correctly, we
must always set

USE FORCING = TRUE

in the GNUmakefile and

nyx.do forcing = 1

in the inputs file.

The external forcing term in the momentum equation (4.3) is then given by

SρU = ρbf (5.1)

where the acceleration field f(x, t) is computed as inverse Fourier transform of the forcing spectrum
f̂(k, t). The time evolution of each wave mode is given by an Ornstein-Uhlenbeck process (see [6, 4]
for details). Since the real space forcing acts on large scales L, non-zero modes are confined to a
narrow window of small wave numbers with a prescribed shape (the forcing profile). The resulting
flow reaches a statistically stationary and isotropic state with a root-mean-square velocity of the
order V = L/T , where the integral time scale T (also known as large-eddy turn-over time) is
usually set equal to the autocorrelation time of the forcing. It is possible to vary the force field
from solenoidal (divergence-free) if the weight parameter ζ = 1 to dilational (rotation-free) if ζ = 0.

To maintain a nearly constant root-mean-square Mach number, a simple model for radiative
heating and cooling around a given equilibrium temperature T0 is applied in the energy equa-
tion (4.5):

SρE = Sρe + U · SρU = −αkB(T − T0)

µmH(γ − 1)
+ ρbU · f (5.2)
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The parameters T0 and α correspond to temp0 and alpha, respectively, in the probin file (along
with rho0 for the mean density, which is unity by default). While the gas is adiabatic for α = 0,
it becomes nearly isothermal if the cooling time scale given by 1/α is chosen sufficiently short
compared to T . For performance reasons, a constant composition (corresponding to constant
molecular weight µ) is assumed.

5.1 List of Parameters

Parameter Definition Acceptable Values Default
forcing.seed seed of the random number generator Integer > 0 27011974
forcing.profile shape of forcing spectrum 1 (plane), 2 (band), 3 (parabolic) 3
forcing.alpha ratio of domain size X to integral length L = X/α Integer > 0 2 2 2
forcing.band width band width of the forcing spectrum relative to alpha Real ≥ 0 and ≤ 1 1.0 1.0 1.0
forcing.intgr vel characteristic velocity V Real > 0 must be set
forcing.auto corrl autocorrelation time in units of T = L/V Real > 0 1.0 1.0 1.0
forcing.soln weight weight ζ of solenoidal relative to dilatational modes Real ≥ 0 and ≤ 1 1.0

Triples for forcing.alpha, forcing.band width, forcing.intgr vel, and forcing.auto corrl corre-
spond to the three spatial dimensions.
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CHAPTER 6

Gravity

In Nyx we always compute gravity by solving a Poisson equation on the mesh hierarchy. To make
sure this option is chosen correctly, we must always set

USE GRAV = TRUE

in the GNUmakefile and

castro.do grav = 1
gravity.gravity type = PoissonGrav

in the inputs file.

To define the gravitational vector we set

g(x, t) = −∇φ (6.1)

where

∆φ =
4πG

a
(ρ− ρ) (6.2)

where ρ is the average of ρ over the entire domain if we assume triply periodic boundary conditions,
and a(t) is the scale of the universe as a function of time.
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CHAPTER 7

Dark Matter Particles

For the moment, assume that we are running in comoving coordinates, with dark matter particles
only (no hydro) and that the particles all exist at level 0. These assumptions are encapsulated in
the following lines in the inputs file:

nyx.use comoving = t
nyx.do dm particles = 1
amr.max level = 0
nyx.do hydro = 0
nyx.do react = 0
nyx.do grav = 1

7.1 Equations

If we define xi and ui as the location and velocity of particle i, respectively, then we wish to solve

dxi
dt

=
1

a
ui (7.1)

d(aui)

dt
= gi (7.2)

where gi is the gravitational force evaluated at the location of particle i, i.e., gi = g(xi, t).

7.2 Initializing the Particles

There are several different ways in which particles can currently be initialized:
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7.2.1 Read from an ASCII file

To enable this option, set

nyx.particle init type = AsciiFile
nyx.ascii particle file =particle file

Here particle file is the user-specified name of the file. The first line in this file is assumed to
contain the number of particles. Each line after that contains

x y z mass xdot ydot zdot

Note that the variable that we call the particle velocity, u = aẋ, so we must multiply ẋ, by a
when we initialize the particles.

7.2.2 Read from a binary file

To enable this option, set

nyx.particle init type = BinaryFile
nyx.binary particle file =particle file

As with the ASCII read, the first line in particle file is assumed to contain the number of par-
ticles. Each line after that contains

x y z mass xdot ydot zdot

Note that the variable that we call the particle velocity, u = aẋ, so we must multiply ẋ, by a
when we initialize the particles.

7.2.3 Read from a binary ”meta” file

This option allows you to read particles from a series of files rather than just a single file. To enable
this option, set

nyx.particle init type = BinaryMetaFile
nyx.binary particle file =particle file

In this case the particle file you specify is an ASCII file specifying a list of file names with full
paths. Each of the files in this list is assumed to be binary and is read sequentially (individual files
are read in parallel) in the order listed.

7.2.4 Reading SPH particles

For some applications it is useful to initialize the grid data with SPH-type particles. To enable this
option, you must set
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nyx.do santa barbara = 1
nyx.init with sph particles = 1

The SPH-type particles can then be read in by setting

nyx.sph particle file =sph particle file

where sph particle file is the user-specified name of the file containing the SPH particles. The type
of sph particle file must be the same (Ascii, Binary or BinaryMeta) as the dark matter particle file
as specified by

nyx.particle init type =

The SPH particles will be discarded by the code once the grid data has been initialized.

7.2.5 Random placement

To enable this option, set

nyx.nyx.particle init type = Random

There are then a number of parameters to set, for example:

nyx.particle initrandom count = 100000
nyx.particle initrandom mass = 1
nyx.particle initrandom iseed = 15

7.2.6 Cosmological

Using cosmological initial conditions is a three step process:

1. Generating a transfer function (e.g. with camb)

2. Generating an initial displacement field (with nyx-ic)

3. Starting nyx

In the following we will look at each step a bit closer.

7.2.6.1 Generating a transfer function

The transfer function is used in nyx-ic to generate the power spectrum. The usual way is to use
camb1 to calculate it for the desired universe. A sample camb.ini is provided with nyx-ic. The
important options are:

• transfer redshift(1) = 50

• transfer matterpower(1) = tf

1See http://camb.info/
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which determine the initial time for the simulation. You should make sure that you catch all
necessary wave numbers for the considered box length and resolution.

From the camb output you have to note values for sigma 8 for a redshift of zero and the initial
redshift. We need this to compute the right normalization.

7.2.6.2 Setting up the initial displacements

We calculate the initial displacements with a stand-alone program called nyx-ic. This takes a
transfer function and some cosmological parameters as an argument and outputs an ”init” direc-
tory which basically contains initial displacements for every grid point in an AMReX MultiFAB.
Furthermore the mf contains a fourth field containing the density contrast as initial condition for
the baryonic matter.
nyx-ic is started with an “inputs“ file similar to the one from Nyx. A sample one is provided. The
options are

#Omega_{Matter}

cosmo.omegam = 0.272

#Omega_{Lambda}

cosmo.omegax = 0.728

#equation of state paramater omega_{effective}

cosmo.weff = -0.980

#Omega_{baryon}*Hubble^2

cosmo.ombh2 = 0.0226

#Hubble/100km/s

cosmo.hubble = 0.704

#scalar spectral index

cosmo.enn = 0.963

# initial z

cosmo.z_init = 50

#sidelength of the box (in Mpc)

cosmo.boxside = 90.14

#seed of the rng

cosmo.isd = 100

#resolution of the box

cosmo.gridpoints = 256

#the output file name

cosmo.initDirName = init

#choose the source of the transferfunction

cosmo.transferfunction = CAMB

#some tabulated transferfunction generated with camb (compare camb-ini-file)

cosmo.tabulatedTk = tf
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# sigma8 for the input tf at z=0 and initial z (to calc the growthfactor)

cosmo.init_sigma8_0 = 0.7891368

cosmo.init_sigma8_init = 2.0463364E-02

The code solves the equation

P (k, a) = 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D(a)

D(a = 1)

)2

(7.3)

to calculate P and from that gaussian distributed density perturbations δ following that spectrum.
Particle displacements are then calculated as Zel’dovich displacements.

Non-gaussian effects as well as neutrino contributions are planned for the future.

7.2.6.3 Using Nyx with cosmological initial conditions

• nyx.nyx.particle init type = Cosmological
set the right init type

• cosmo.initDirName = init
set the name of the displacements directory (amrex format)

• cosmo.particle mass = 0.19178304E+10
sets the mass [M�] of each particle

• cosmo.omegam = 0.272
set ΩMatter

• cosmo.omegax = 0.728
set ΩΛ

• cosmo.hubble = 0.704
set the reduced hubble constant h

We will generate a particle of mass particle mass in every grid cell displaced from the center
by the value found in the initDirName for that cell. Velocities are calculated in the Zel’dovich
approximation by

~v = ∆~x× 100km/s× a
√

ΩM/a3 + ΩΛ × Lbox (7.4)

where ∆~x is the displacement of the particle.

7.3 Time Stepping

There are currently two different ways in which particles can be moved:

41



7.3.1 Random

To enable this option, set

nyx.particle move type = Random

Update the particle positions at the end of each coarse time step using a random number between
0 and 1 multiplied by 0.25 dx.

7.3.2 Motion by Self-Gravity

To enable this option, set

nyx.particle move type = Gravitational

7.3.2.1 Move-Kick-Drift Algorithm

In each time step:

• Solve for gn (only if multilevel, otherwise use gn+1 from previous step)

• u
n+1/2
i = 1

an+1/2 ((anuni ) + ∆t
2 gni )

• xn+1
i = xni + ∆t

an+1/2 u
n+1/2
i

• Solve for gn+1 using xn+1
i

• un+1
i = 1

an+1 ((an+1/2u
n+1/2
i ) + ∆t

2 gn+1
i )

Note that at the end of the timestep xn+1
i is consistent with gn+1 becasue we have not advanced

the positions after computing the new-time gravity. This has the benefit that we perform only one
gravity solve per timestep (in a single-level calculation with no hydro) because the particles are
only moved once.

7.3.2.2 Computing g

We solve for the gravitational vector as follows:

• Assign the mass of the particles onto the grid in the form of density, ρDM . The mass of each
particle is assumed to be uniformly distributed over a cube of side ∆x, centered at what we
call the position of the particle. We distribute the mass of each particle to the cells on the
grid in proportion to the volume of the intersection of each cell with the particle’s cube. We
then divide these cell values by ∆x3 so that the right hand side of the Poisson solve will be
in units of density rather than mass. Note that this is the comoving density.

• Solve ∇2φ = 4πG
a ρDM . We discretize with the standard 7-point Laplacian (5-point in 2D)

and use multigrid with Gauss-Seidel red-black relaxation to solve the equation for φ at cell
centers.
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• Compute the normal component of g = −∇φ at cell faces by differencing the adjacent values
of φ, e.g. if g = (gx, gy, gz), then we define gx on cell faces with a normal in the x-direction
by computing gx,i−1/2,j,k = −(φi,j,k − φi−1,j,k)/∆x.

• Interpolate each component of g from normal cell faces onto each particle position using linear
interpolation in the normal direction.

7.4 Output Format

7.4.1 Checkpoint Files

The particle positions and velocities are stored in a binary file in each checkpoint directory. This
format is designed for being read by the code at restart rather than for diagnostics.

We note that the value of a is also written in each checkpoint directory, in a separate ASCII
file called comoving a, containing only the single value.

7.4.2 Plot Files

If particles.write in plotfile = 1 in the inputs file then the particle positions and velocities will
be written in a binary file in each plotfile directory.

In addition, we can also visualize the particle locations as represented on the grid. There are
two “derived quantities” which represent the particles. Setting

amr.derive plot vars = particle count particle mass density
amr.plot vars = NONE

in the inputs file will generate plotfiles with only two variables. particle count represents the
number of particles in a grid cell; particle mass density is the density on the grid resulting from
the particles.

We note that the value of a is also written in each plotfile directory, in a separate ASCII file
called comoving a, containing only the single value.

7.4.3 ASCII Particle Files

To generate an ASCII file containing the particle positions and velocities, one needs to restart from a
checkpoint file but doesn’t need to run any steps. For example, if chk00350 exists, then one can set:

amr.restart = chk00350
max step = 350
particles.particle output file = particle output

which would tell the code to restart from chk00350, not to take any further time steps, and to write
an ASCII-format file called particle output.
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This file has the same format as the ASCII input file:

number of particles
x y z mass xdot ydot zdot

7.4.4 Run-time Data Logs

If you set

amr.data log = log file

in the inputs file, then at run-time the code will write out file log file with entries every coarse grid
time step, containing

nstep time dt redshift a
and if nyx.do hydro then also

max temp, rho-wgted temp, V-wgted temp, T @ 〈 rho 〉

7.4.5 Run-time Screen Output

There are a number of flags that control the verbosity written to the screen at run-time. These
are:
amr.v
nyx.v
gravity.v
mg.v
particles.v

These control printing about the state of the calculation (time, value of a, etc) as well as timing
information.
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CHAPTER 8

Radiative Heating/Cooling

Nyx provides the capability to compute local heating and cooling effects due to radiation. The
motivation and algorithm for the heating and cooling components is documented in [1], and the
relevant code is located in the Source/HeatCool subdirectory. The code is activated through the
USE HEATCOOL=TRUE option in the GNUmakefile. Mathematically, the heating and cooling can be
described by a single ODE in each cell, to be integrated per time step ∆t. This ODE exhibits a
sensitive relationship to quantities such as temperature and free electron density, and consequently
it often requires sophisticated integration techniques to compute correctly.

Nyx provides a few different techniques for solving this ODE, which are selected via the
nyx.heat cool type input parameter. One method is to use the VODE ODE solver (selected
with nyx.heat cool type=3). The source code for VODE is included in the Util/VODE subdi-
rectory and is compiled automatically with the rest of Nyx. However, while VODE is sufficient
for computing this ODE correctly, it is an old Fortran code which is no longer maintained, and
consequently will not easily be adapted to future high-performance computing architectures.

VODE’s successor is CVODE, which is a translation of the original VODE solver from Fortran
to C. CVODE is actively developed and maintained, and is more likely to be adapted to future
architectures. To use CVODE in Nyx, one may use the nyx.heat cool type=5 input parameter.
Currently the performance of VODE is slightly better because CVODE evaluates the ODE RHS one
more time than VODE per coarse time step integration. Users should note that, while the VODE
solver is compiled automatically in Nyx, CVODE must be compiled as a separate library; instruc-
tions for compiling CVODE are provided in the amrex User Guide. To link the external CVODE
solver into Nyx, one must set USE HEATCOOL=TRUE as well as USE CVODE=TRUE in the GNUmakefile.

Finally, a third ODE integration option (which is new and highly experimental) consists
of using CVODE while treating groups of ODEs in different cells as a single system of coupled
ODEs. This option can be selected with the nyx.heat cool type=7 option. The purpose of this
approach is to enable the evaluation of multiple RHSs simultaneously, using SIMD instructions.
SIMD parallelism comprises a large fraction of compute performance on modern HPC architectures,
and consequently, this approach can lead to a significant performance gain in the ODE integration
(which is the most expensive computational kernel in Nyx). The number of ODEs (cells) which are
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computed simultaneously is chosen through the input parameter nyx.simd width. On Intel Xeon
Phi, with 512 bit-wide SIMD instructions, an appropriate value for this parameter might be 8 or
16, or perhaps larger; the value which yields the highest performance will vary by architecture.
However, users are cautioned that this mode remains experimental and its results have not been
subjected to the same level of verification as the other solver methods. In particular, the are three
numerical tolerances, available as input parameters, which affect the convergence of the scalar vs
SIMD ODE integration:

• nyx.eos nr eps: this is the convergence criterion for the Newton-Raphson iteration which is
used to evaluate the ODE RHS

• nyx.vode rtol: this is the relative tolerance required for the ODE integration in VODE or
CVODE

• nyx.vode atol scaled: this is the absolute tolerance required for the ODE integration in
VODE or CVODE, scaled by the initial value of the independent variable in the ODE

These variables, in particular nyx.vode rtol, have different effects depending on whether one
is integrating a single ODE at a time, or a system of ODEs simultaneously. One should be mindful
of the numerical differences which arise from these, which can be observed with the fcompare tool
in amrex.
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CHAPTER 9

Active Galactic Nuclei

9.1 The AGN Model

In the AGN model, super-massive black hole (SMBH) particles are formed at haloes, where each
halo is defined by a connected mass enclosed by a user-defined density isocontour. In order to find
haloes, we use the Reeber package described in Section 9.2. Each AGN particle has the standard
dark matter particle attributes of position, velocity, and mass, as well as two additional attributes,
its stored accretion energy and its mass accretion rate.

Table 9.1: Parameters of the AGN model

In “probin” file Parameter Fiducial value Explanation

* Mh,min 1010 M� Minimum halo mass for SMBH placement
* Mseed 105 M� Seed mass of SMBH
T min Tmin 107 K Minimum heating of the surrounding gas
bondi boost α 100 Bondi accretion boost factor
max frac removed fmax,removed 0.5 Maximum fraction of mass removed from gas
eps rad εr 0.1 Radiation efficiency
eps coupling εc 0.15 Coupling efficiency
eps kinetic εkin 0.1 Kinetic feedback efficiency
frac kinetic fkin 0 Fraction of feedback energy that is kinetic

* Mh,min and Mseed are not set in the “probin” file, but in the inputs file, by respectively
Nyx.mass halo min and Nyx.mass seed.
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9.1.1 Creating AGN Particles from Haloes

Each halo with threshold mass of Mh > Mh,min that does not already host a black hole particle is
seeded with a black hole of mass Mseed. The initial position of this AGN particle is the center of
the cell where the density is highest in the halo.

When an AGN particle is created, the density in its cell is reduced by the amount required
for mass to be conserved, and the velocity of the AGN particle is initialized so that momentum is
conserved. The accretion energy and mass accretion rate are initialized to zero.

9.1.2 Merging AGN Particles

Two AGN particles merge when both of these conditions obtain:

1. The distance between them, l, is less than the mesh spacing, h.

2. The difference of their velocities, vrel, is less than the circular velocity at distance l:

vrel <
√
GMBH/l

where MBH is the mass of the more massive SMBH in the pair, and G is the gravitational
constant.

Criterion 2 above is necessary in order to prevent AGN particles from merging during a fly-through
encounter of two haloes, as this could lead to AGN particles being quickly removed from the host
halo due to momentum conservation.

The merger of two AGN particles is implemented as the less massive one being removed, and
its mass and momentum being transferred to the more massive one.

9.1.3 Accretion

For an AGN particle of mass MBH, the Bondi–Hoyle accretion rate is

ṀB = α
4πG2M2

BHρ

(c2
s + u2)3/2

, (9.1)

where ρ, c2
s, and u2 are volume averages with a cloud-in-cell stencil of the gas’s density, squared

sound speed, and squared velocity, respectively, in the neighborhood of the particle.
The maximum black hole accretion rate is the Eddington limit,

ṀEdd =
4πGMBHmp

εrσTc
, (9.2)

with proton mass mp, Thomson cross section σT, and speed of light c.
The mass accretion rate of the SMBH is the smaller of the two rates above: Ṁacc =

min{ṀB, ṀEdd}. Then the gas will lose mass Ṁacc∆t, where ∆t is the length of the time step.
However, Ṁacc is adjusted downward if necessary so that when cloud-in-cell stencil weights are
applied in the neighborhood of the particle, the fraction of gas density removed from any cell of
the stencil is at most fmax,removed.

The mass of the AGN particle increases by (1− εr)Ṁacc∆t, while Ṁacc∆t amount of gas mass is
removed from the grid according to cloud-in-cell stencil weights in the neighborhood of the particle.
The momentum transfer can be computed by assuming the velocity of the gas is unchanged; thus
the gas in each cell loses momentum in proportion to its mass loss, and the particle gains the sum
of the gas momentum loss multiplied by (1− εr).
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9.1.4 Feedback Energy

Feedback energy is stored in an AGN particle variable EAGN, and is accumulated over time until
released. The fraction fkin goes to kinetic energy, and the rest to thermal energy.

9.1.4.1 Thermal Feedback

We increment EAGN by thermal feedback energy, calculated from the mass accretion rate as

∆Ethermal = (1− fkin)εcεrṀaccc
2∆t. (9.3)

9.1.4.2 Kinetic/Momentum Feedback

We increment EAGN by the kinetic feedback energy

∆Ekinetic = fkinεkinṀaccc
2∆t. (9.4)

We also need to adjust the energy density and momentum density of the gas. We do this by
computing a jet velocity

~vjet =

√
2∆Ekinetic

mg
~n (9.5)

where mg is the total gas mass inside the cloud-in-cell local environment, and ~n is a randomly
chosen unit vector. We add ρ~v to the momentum density ~p of the gas, and ~vjet · ~p to its energy
density, both of these weighted by the cloud-in-cell stencil of the particle.

9.1.4.3 Releasing Feedback Energy

The accumulated energy is released when

EAGN > mge (9.6)

where e is the average specific internal energy of the gas over the cloud-in-cell stencil, obtained
from the equation of state using temperature Tmin and average density of the gas over the same
stencil, and mg is the total gas mass inside the cloud-in-cell local environment.

9.2 The Reeber Package

Reeber is a separate package with a halo finder. Here are the Reeber parameters that are assigned
in the input file.

Parameter Definition Acceptable Values Default
reeber.halo int timesteps between halo finder calls Integer -1 (none)
reeber.negate allow negative values for analysis 0 if false, 1 if true 1
reeber.halo density vars density variable list density, particle mass density “density”
reeber.halo extrema threshold extrema threshold for haloes Real 200.
reeber.halo component threshold component threshold for haloes Real 82.
reeber.absolute halo thresholds are halo thresholds absolute 0 if multiples of mean, 1 if absolute 0
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CHAPTER 10

Visualization

There are several visualization tools that can be used for Nyx plotfiles. The standard tool used
within the amrex-community is Amrvis, a package developed and supported by CCSE that is de-
signed specifically for highly efficient visualization of block-structured hierarchical AMR data. Plot-
files can also be viewed using the VisIt, ParaView, and yt packages. Particle data can be viewed
using ParaView.

Please see Chapter 9 of the AMReX User’s Guide (available in amrex/Docs) for more detail
about using all of these visualization packages.

To control which variables appear in the plotfile, the user can set

amr.plot vars =
amr.derive plot vars =

The default for amr.plot vars is all of the state variables. The default for amr.derive plot vars

is none of the derived variables. So if you include neither of these lines then the plotfile will contain
all of the state variables and none of the derived variables.

If you want all of the state variables plus entropy and pressure (both derived quantities), for ex-
ample, then set

amr.derive plot vars = entropy pressure

If you just want density (state variable) and pressure (derived quantity), for example, then set

amr.plot vars = density

amr.derive plot vars = pressure
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CHAPTER 11

Post-processing

Nyx interfaces with two post-processing suites, Reeber and Gimlet.

11.1 Reeber

Reeber uses topological methods to construct merge trees of scalar fields. These trees are effectively
parameter-independent and contain a complete description of the field topology. In the context of
Nyx, the field of interest is the dark matter density. Nyx then queries the merge tree with user-
defined runtime parameters in order to locate the volume-averaged center of dark matter halos.
The same tree can be queried with any number of such parameters to find halos with different
mass/density thresholds.

11.2 Gimlet

Gimlet computes a variety of quantities about the simulation, including optical depths, Lyman-
alpha fluxes, power spectra (both 1-D “line-of-sight” as well as fully 3-D), and probability distribu-
tion functions. These suites are fully MPI-parallel and can be run either “in situ” or “in-transit,”
or with a combination of both. A detailed description of their usage is provided in the Nyx User
Guide.

11.3 Usage

Nyx can post-process with Gimlet alone, with Reeber alone, or with both simultaneously. To
compile with Gimlet, add GIMLET = TRUE to the GNUmakefile; to compile with Reeber, add REEBER

= TRUE. Note that these codes are in separate repositories and are not included with Nyx.
Nyx and AMReX provide the capability for the user to execute an arbitrary post-processing

workflow in situ. An in situ workflow is one in which all MPI processes evolving the simulation
stop at specified time steps and perform the post-processing before continuing with the simulation.
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