algorithm

On the Piecewise Parabolic Method for Compressible Flow With Stellar Equations of State
Zingale, M., & Katz, M. P. 2015, ApJS, 216, p. 31
Numerical approaches for multidimensional simulations of stellar explosions
Chen, K.-J., Heger, A., & Almgren, A. S. 2013, Astronomy and Computing, 3, p. 70–78
CASTRO: A New Compressible Astrophysical Solver. III. Multigroup Radiation Hydrodynamics
Zhang, W., Howell, L., Almgren, A., Burrows, A., Dolence, J., & Bell, J. 2013, ApJS, 204, p. 7
Conservative Initial Mapping For Multidimensional Simulations of Stellar Explosions
Chen, K.-J., Heger, A., & Almgren, A. 2012, in Journal of Physics Conference Series, 402, p. 012024
CASTRO: A New Compressible Astrophysical Solver. II. Gray Radiation Hydrodynamics
Zhang, W., Howell, L., Almgren, A., Burrows, A., & Bell, J. 2011, ApJS, 196, p. 20
CASTRO: A New Compressible Astrophysical Solver. I. Hydrodynamics and Self-gravity
Almgren, A. S., Beckner, V. E., Bell, J. B., Day, M. S., Howell, L. H., Joggerst, C. C., Lijewski, M. J., Nonaka, A., Singer, M., & Zingale, M. 2010, ApJ, 715, p. 1221–1238
MAESTRO, CASTRO, and SEDONA — Petascale Codes for Astrophysical Applications
Almgren, A., Bell, J., Kasen, D., Lijewski, M., Nonaka, A., Nugent, P., Rendleman, C., Thomas, R., & Zingale, M. 2010, ArXiv e-prints

core-collapse supernovae

Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae
Chen, K.-J., Woosley, S. E., & Sukhbold, T. 2016, ApJ, 832, p. 73
Two-dimensional Core-collapse Supernova Models with Multi-dimensional Transport
Dolence, J. C., Burrows, A., & Zhang, W. 2015, ApJ, 800, p. 10
Dimensional Dependence of the Hydrodynamics of Core-collapse Supernovae
Dolence, J. C., Burrows, A., Murphy, J. W., & Nordhaus, J. 2013, ApJ, 765, p. 110
Very Low Energy Supernovae from Neutrino Mass Loss
Lovegrove, E., & Woosley, S. E. 2013, ApJ, 769, p. 109
The Dominance of Neutrino-driven Convection in Core-collapse Supernovae
Murphy, J. W., Dolence, J. C., & Burrows, A. 2013, ApJ, 771, p. 52
An Investigation into the Character of Pre-explosion Core-collapse Supernova Shock Motion
Burrows, A., Dolence, J. C., & Murphy, J. W. 2012, ApJ, 759, p. 5
The hydrodynamic origin of neutron star kicks
Nordhaus, J., Brandt, T. D., Burrows, A., & Almgren, A. 2012, MNRAS, 423, p. 1805–1812
The potential role of spatial dimension in the neutrino-driving mechanism of core-collapse supernova explosions
Burrows, A., Nordhaus, J., Almgren, A., & Bell, J. 2011, Computer Physics Communications, 182, p. 1764–1766
Induced Rotation in Three-dimensional Simulations of Core-collapse Supernovae: Implications for Pulsar Spins
Rantsiou, E., Burrows, A., Nordhaus, J., & Almgren, A. 2011, ApJ, 732, p. 57
Dimension as a Key to the Neutrino Mechanism of Core-collapse Supernova Explosions
Nordhaus, J., Burrows, A., Almgren, A., & Bell, J. 2010, ApJ, 720, p. 694–703
Three-dimensional Simulations of Rayleigh-Taylor Mixing in Core-collapse Supernovae with Castro
Joggerst, C. C., Almgren, A., & Woosley, S. E. 2010, ApJ, 723, p. 353–363

low-energy supernovae

Very Low Energy Supernovae: Light Curves and Spectra of Shock Breakout
Lovegrove, E., Woosley, S. E., & Zhang, W. 2017, ArXiv e-prints

pop III supernovae

Low-energy Population III supernovae and the origin of extremely metal-poor stars
Chen, K.-J., Heger, A., Whalen, D. J., Moriya, T. J., Bromm, V., & Woosley, S. E. 2017, MNRAS, 467, p. 4731–4738
Pair-Instability Supernovae of Non-Zero Metallicity Stars
Chen, K.-J., Heger, A., Woosley, S., Almgren, A., & Whalen, D. J. 2015, in Numerical Modeling of Space Plasma Flows ASTRONUM-2014, ed. Pogorelov, N. V., Audit, E., & Zank, G. P., 498, p. 47
Pair-instability supernovae of fast rotating stars
Chen, K.-J. 2015, Modern Physics Letters A, 30, p. 1530002
Pair Instability Supernovae of Very Massive Population III Stars
Chen, K.-J., Heger, A., Woosley, S., Almgren, A., & Whalen, D. J. 2014, ApJ, 792, p. 44
Two-dimensional Simulations of Pulsational Pair-instability Supernovae
Chen, K.-J., Woosley, S., Heger, A., Almgren, A., & Whalen, D. J. 2014, ApJ, 792, p. 28
Supernovae at the cosmic dawn
Chen, K.-J. 2014, International Journal of Modern Physics D, 23, p. 1430008
Pair-instability Supernovae in the Local Universe
Whalen, D. J., Smidt, J., Heger, A., Hirschi, R., Yusof, N., Even, W., Fryer, C. L., Stiavelli, M., Chen, K.-J., & Joggerst, C. C. 2014, ApJ, 797, p. 9
Population III Hypernovae
Smidt, J., Whalen, D. J., Wiggins, B. K., Even, W., Johnson, J. L., & Fryer, C. L. 2014, ApJ, 797, p. 97
The General Relativistic Instability Supernova of a Supermassive Population III Star
Chen, K.-J., Heger, A., Woosley, S., Almgren, A., Whalen, D. J., & Johnson, J. L. 2014, ApJ, 790, p. 162
Supermassive Population III Supernovae and the Birth of the First Quasars
Whalen, D. J., Even, W., Smidt, J., Heger, A., Chen, K.-J., Fryer, C. L., Stiavelli, M., Xu, H., & Joggerst, C. C. 2013, ApJ, 778, p. 17
Finding the First Cosmic Explosions. II. Core-collapse Supernovae
Whalen, D. J., Joggerst, C. C., Fryer, C. L., Stiavelli, M., Heger, A., & Holz, D. E. 2013, ApJ, 768, p. 95
Illuminating the Primeval Universe with Type IIn Supernovae
Whalen, D. J., Even, W., Lovekin, C. C., Fryer, C. L., Stiavelli, M., Roming, P. W. A., Cooke, J., Pritchard, T. A., Holz, D. E., & Knight, C. 2013, ApJ, 768, p. 195
Multidimensional simulations of pair-instability supernovae
Chen, K.-J., Heger, A., & Almgren, A. S. 2011, Computer Physics Communications, 182, p. 254–256
The Early Evolution of Primordial Pair-instability Supernovae
Joggerst, C. C., & Whalen, D. J. 2011, ApJ, 728, p. 129
Two-Dimensional Simulations of Pair-Instability Supernovae
Chen, K.-J., Heger, A., & Almgren, A. S. 2010, in American Institute of Physics Conference Series, ed. Whalen, D. J., Bromm, V., & Yoshida, N., 1294, p. 255–256
The Nucleosynthetic Imprint of 15-40 M $_{sun}$ Primordial Supernovae on Metal-Poor Stars
Joggerst, C. C., Almgren, A., Bell, J., Heger, A., Whalen, D., & Woosley, S. E. 2010, ApJ, 709, p. 11–26

Type Ia supernovae—Chandra model

The Deflagration Stage of Chandrasekhar Mass Models for Type Ia Supernovae. I. Early Evolution
Malone, C. M., Nonaka, A., Woosley, S. E., Almgren, A. S., Bell, J. B., Dong, S., & Zingale, M. 2014, ApJ, 782, p. 11
Carbon Deflagration in Type Ia Supernova. I. Centrally Ignited Models
Ma, H., Woosley, S. E., Malone, C. M., Almgren, A., & Bell, J. 2013, ApJ, 771, p. 58
Burning Thermals in Type Ia Supernovae
Aspden, A. J., Bell, J. B., Dong, S., & Woosley, S. E. 2011, ApJ, 738, p. 94

Type Ia supernovae—mergers and collisions

White Dwarf Mergers on Adaptive Meshes. I. Methodology and Code Verification
Katz, M. P., Zingale, M., Calder, A. C., Swesty, F. D., Almgren, A. S., & Zhang, W. 2016, ApJ, 819, p. 94
Type Ia Supernovae from Merging White Dwarfs. II. Post-merger Detonations
Raskin, C., Kasen, D., Moll, R., Schwab, J., & Woosley, S. 2014, ApJ, 788, p. 75
Type Ia Supernovae from Merging White Dwarfs. I. Prompt Detonations
Moll, R., Raskin, C., Kasen, D., & Woosley, S. E. 2014, ApJ, 785, p. 105

Type Ia supernovae—sub-Chandra model

V&V

Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells
Joggerst, C. C., Nelson, A., Woodward, P., Lovekin, C., Masser, T., Fryer, C. L., Ramaprabhu, P., Francois, M., & Rockefeller, G. 2014, Journal of Computational Physics, 275, p. 154–173