Hydrodynamic Equations in Comoving Coordinates

Conservative Form

We solve the equations of gas dynamics in a coordinate system that is comoving with the expanding universe, with expansion factor, \(a,\) related to the redshift, \(z\), by \(a = 1 / (1 + z).\) The continuity equation is written,

\[\begin{split}\label{eq:dens} \frac{\partial \rho_b}{\partial t} = - \frac{1}{a} \nabla \cdot (\rho_b {\bf U}) , \\\end{split}\]

where \(\rho_b\) is the comoving baryonic density, related to the proper density by \(\rho_b = a^3 \rho_{proper},\) and \({\bf U}\) is the proper peculiar baryonic velocity.

The momentum evolution equation can be expressed as

\[\begin{aligned} \frac{\partial (\rho_b {\bf U})}{\partial t} &=& \frac{1}{a} \left( - \nabla \cdot (\rho_b {\bf U} {\bf U}) - \nabla p + \rho_b {\bf g} + {\bf S}_{\rho {\bf U}} - \dot{a} \rho_b {\bf U} \right) , \end{aligned}\]

or equivalently,

\[\begin{aligned} \label{eq:momt} \frac{\partial (a \rho_b {\bf U})}{\partial t} &=& - \nabla \cdot (\rho_b {\bf U} {\bf U}) - \nabla p + \rho_b {\bf g} + {\bf S}_{\rho {\bf U}} , \end{aligned}\]

where the pressure, \(p\), that appears in the evolution equations is related to the proper pressure, \(p_{proper},\) by \(p = a^3 p_{proper}.\) Here \({\bf g} = - \nabla \phi\) is the gravitational acceleration vector, and \({\bf S}_{\rho {\bf U}}\) represents any external forcing terms.

The energy equation can be written,

\[\begin{aligned} \frac{\partial (\rho_b E)}{\partial t} &=& \frac{1}{a} \left[ - \nabla \cdot (\rho_b {\bf U} E + p {\bf U}) + ( \rho_b {\bf U} \cdot {\bf g} + S_{\rho E} ) - \dot{a} ( 3 (\gamma - 1) \rho_b e + \rho_b ( {\bf U} \cdot {\bf U}) ) \right] . \end{aligned}\]

or equivalently,

\[\begin{aligned} \label{eq:energy} \frac{\partial (a^2 \rho_b E)}{\partial t} &=& a \left[ - \nabla \cdot (\rho_b {\bf U} E + p {\bf U}) + \rho_b {\bf U} \cdot {\bf g} + S_{\rho E} + \dot{a} ( \; ( 2 - 3 (\gamma - 1) ) \; \rho_b e ) \right] . \end{aligned}\]

Here \(E = e + {\bf U} \cdot {\bf U} / 2\) is the total energy per unit mass, where \(e\) is the specific internal energy. \(S_{\rho E} = S_{\rho e} + {\bf U} \cdot {\bf S}_{\rho {\bf U}}\) where \(S_{\rho e} = \Lambda^H - \Lambda^C\) represents the heating and cooling terms, respectively. Additionally, \({\bf S}_{\rho {E}}\) may include any external forcing terms on the total energy, for example as in the stochastic forcing application. We can write the evolution equation for internal energy as

\[\begin{aligned} \frac{\partial (\rho_b e)}{\partial t} &=& \frac{1}{a} \left[ - \nabla \cdot (\rho_b {\bf U} e) - p \nabla \cdot {\bf U} - \dot{a} ( 3 (\gamma - 1) \rho_b e ) + S_{\rho e} \right] . \end{aligned}\]

or equivalently,

\[\begin{aligned} \frac{\partial (a^2 \rho_b e)}{\partial t} &=& a \left[ - \nabla \cdot (\rho_b {\bf U} e) - p \nabla \cdot {\bf U} + S_{\rho e} + \dot{a} ( \; ( 2 - 3 (\gamma - 1) ) \; \rho_b e ) \right] . \end{aligned}\]

Note that for a gamma-law gas with \(\gamma = 5/3,\) we can write

\[\begin{aligned} \frac{\partial (a^2 \rho_b E)}{\partial t} &=& a \left[ -\nabla \cdot (\rho_b {\bf U} E + p {\bf U}) + \rho_b {\bf U} \cdot {\bf g} + S_{\rho e} \right] . \end{aligned}\]

and

\[\begin{aligned} \frac{\partial (a^2 \rho_b e)}{\partial t} &=& a \left[ - \nabla \cdot (\rho_b {\bf U} e) - p \nabla \cdot {\bf U} + S_{\rho e} \right] . \end{aligned}\]